A napokban az MVM Paksi Atomerőmű bejelentette, hogy hivatalosan is kezdetét vette a meglévő paksi blokkok további üzemidő-hosszabbítása. A kérdéssel korábban a Kormány, majd a Parlament is foglalkozott, most pedig az EURATOM egyezmény értelmében az Európai Bizottsághoz kellett a projektet hivatalosan is bejelenteni. A paksi, egyenként 500 MW névleges villamos teljesítményű, eredetileg 440 MW-os négy darab VVER-440/V213 típusú orosz tervezésű blokk 1982 és 1987 kezdte meg a működését. Az eredetinél nagyobb névleges teljesítményt a több lépésben, sok év munkájával végrehajtott teljesítménynövelési program tette lehetővé.
A blokkok terveit annak idején – moszkvai és kijevi tervezőirodákban – 30 éves tervezett élettartamot feltételezve készítették el a mérnökök, de az akkori nyugati nyomottvizes reaktorokhoz hasonlóan ezek a blokkok is hatalmas műszaki tartalékkal épültek meg, így a 2000-es évek legelején indult az a program, ami megalapozta az egységek üzemidő-hosszabbítását. Akkor, a 2000-es években 20 éves üzemidő-hosszabbítás volt a cél, amit sikerült is mind engedélyezési, mind műszaki oldalról megvalósítani. Műszakilag az akkori (mondhatjuk első) üzemidő-hosszabbítási (ÜH) program inkább egy gondos és következetes tervszerű karbantartási program volt, a berendezések nagy tervezési tartalékai és jó műszaki állapota nem követelt többet.
Engedélyezési oldalról a munka sokkal nagyobb volt, mert az 1970-es évek szovjet dokumentációs előírásai nem voltak olyan szigorúak, mint a 2000-es évek nyugati nemzetközi gyakorlata, így számos berendezés tervezési alapját gyakorlatilag újra elő kellett állítani, és tulajdonképpen a kész, működő létesítményről be kellett bizonyítani, hogy a megoldásai megfelelnek a kor előírásainak. Ez a munka sikeres volt, és a létesítmény üzemeltetési engedélyt kapott az eredeti 30 év fölött további 20 évre. Ez a +20 éves üzemidő a négy blokk esetében 2032 és 2037 között jár le, de az előzetes vizsgálatok – és a nemzetközi tapasztalatok – azt mutatják, hogy efölötti további üzemeltetés is lehetséges, ezt tűzi ki célul a most hivatalosan is bejelentett további üzemidő-hosszabbítási (TÜH) program. Ez végeredményben akár 30+20+20=70 éves teljes üzemidőt is lehetővé tehet. De ne szabadjunk ennyire előre, nézzük a részleteket!
Kilóg-e ez a magyar terv a nemzetközi trendekből, a nemzetközi gyakorlatból?
A válasz egyértelműen az, hogy nem, nem rí ki a nemzetközi folyamatokból a magyar terv. A nyomottvizes reaktorokat nyugaton eleve 40 éves üzemidőre engedélyezték, és ezt fejelik meg a legtöbb helyen először 20, majd további 20 évvel. Sőt, az USA nukleáris biztonsági szabályai akár a 80 éven túli üzemeltetést is megengedik, ha a nukleáris biztonsági szabályokat a létesítmény és annak üzemeltetője teljesíteni tudja. A finnek, csehek, szlovákok, franciák (stb.) hasonló hosszú távú üzemeltetésre készülnek a paksiakhoz hasonló korú atomerőművi blokkoknál.
Hogyan lehetséges az atomerőművek ilyen hosszú távú üzemeltetése?
Eleve le kell szögezni, hogy ez nem minden létesítménynél lehetséges! Például a britek grafitmoderálású gázhűtésű reaktorai (GCR) műszakilag nem alkalmasak az ilyen hosszú távú üzemre, mert a reaktorberendezés elhasználódása olyan mértékű az idő előrehaladtával, hogy a műszaki követelmények teljesítése az eredetileg tervezett üzemidő felett túl sok pénzbe kerülne. Ott eddig 33 darab ilyen GCR blokkot állítottak le véglegesen, és a még üzemelő 8 darab blokk leállítása is bekövetkezik a következő években. De a 70-es évek végétől épített nyomottvizes (PWR és VVER) reaktorok a legtöbb országban bőven tovább üzemeltethetőek, mint az eredetileg tervezett 30 vagy 40 éves üzemidő.
Mivel az atomerőművek a villamosenergia-piacon értékesítik terméküket, ezért először is gazdaságos kell legyen az üzemidő-hosszabbítás, a szükséges befektetések meg kell térüljenek a maradék üzemidő alatt. Ez egy fontos, szükséges, de nem elégséges feltétel. A blokkok üzemidő-hosszabbítása 40 vagy 50 éves üzemen túl mindenképpen jelentős beruházásokat, felújításokat igényel, de ez a legtöbb esetben töredéke egy új atomerőmű beruházási költségeinek. A létesítmény hatásfoka az elhasználódással érdemben nem csökken, a normál karbantartási programokkal az energiaátalakító rendszerek hatásfoka megtartható a névleges érték közelében.
Műszakilag sokkal inkább az a kérdés, hogy a rendelkezésreállás hogyan alakul, hiszen a kopás, elhasználódás következtében egyes berendezések működési megbízhatósága csökkenhet. Jó karbantartási és állapotfelügyeleti programokat kell működtetni annak érdekében, hogy a normál üzemhez szükséges berendezések folyamatos működőképességét fenn tudják tartani. Egy gyakorta karbantartásra szoruló létesítmény sokkal kevesebb áramot termelne, így a tulajdonosoknak, üzemeltetőknek nyilván nem érdeke, hogy ez bekövetkezzen. Az üzemeltetési megbízhatóság fenntartása érdekében tehát a szükséges felújításokat el fogják végezni, és ez gazdaságilag is megtérülő beruházás lesz.
Külön kell gondoskodni a nukleáris biztonsági feltételek teljesítéséről. Evidencia, hogy a létesítménynek az üzemelés utolsó napján is teljesítenie kell minden nukleáris biztonsági követelményt, tehát ebben nyilvánvalóan nem lehetséges engedményeket tenni.
Hogyan teljesíthetőek a nukleáris biztonsági követelmények?
Közelítsük meg a kérdést a mérnöki gátak irányából! Atomerőművekben négy mérnöki gát szolgálja a maghasadásos láncreakció során keletkező radioaktív anyagok létesítményben tartását, amelyektől a környezetet meg akarjuk óvni. Ezek a mérnöki gátak:
- az urán-dioxid üzemanyag tabletták kerámia mátrixa,
- az urán-dioxid tablettákat befogadó üzemanyag pálcák fém burkolata,
- a primer hűtőrendszer nagy nyomásra méretezett fémszerkezete, benne kiemelten a reaktortartállyal és annak falával,
- a hermetikus védőépület (konténment).
1. ábra: Mérnöki gátak az atomerőműben (Forrás: Aszódi Attila, egyetemi előadás)
A mérnöki gátak közül az 1. és a 2. három-négy évente, újra és újra megújul, hiszen az üzemanyagkazetták cseréjével mindig új üzemanyagot, ezzel új tablettákat és őket körülvevő új üzemanyag pálcákat rakunk a reaktorba. Ezek megengedettnél nagyobb elhasználódását tehát a normál üzemmenet mellett alkalmazott átrakási programmal eleve elkerüljük. Ez nem igényel speciális, további beavatkozást a további üzemidő-hosszabbítás során.
Nukleáris biztonsági szempontból fő kérdésnek tehát a 3. és a 4. mérnöki gát funkcióinak hosszú távú fenntartása marad.
A 3. mérnöki gát, tehát a primer hűtőrendszer és a reaktortartály az egyik kritikus elem, amire kiemelten oda kell figyelni az üzemidő-hosszabbítás során. Ezek vastag falú gépészeti szerkezetek, sok hegesztési varrattal, így ezeket rendszeresen vizsgálják, a varratokat átvilágítják, roncsolásmentes anyagvizsgálatokkal győződnek meg arról, hogy megfelelő állapotban vannak.
A reaktortartály olyan értelemben is kritikus elem, hogy ebben zajlik a maghasadásos láncreakció, melynek során nagy energiájú neutronok keletkeznek, amelyek képesek károsodást okozni az anyagszerkezetben. Mivel a reaktortartály nagy nyomásnak (120-150 bar, erőműtől függően) és magas, 300 °C körüli hőmérsékletnek van kitéve normál üzemben, ezért kulcskérdés, hogy az ebből származó mechanikai feszültségeket el tudja viselni tönkremenetel nélkül, ráadásul átmeneti, tranziens folyamatok során is helyt kell állnia. Annak igazolására, hogy a reaktortartály anyag mindezt kibírja, egy speciális ún. tartályfelügyeleti programot kell végrehajtani: a paksi reaktortartályok gyártásánál is vettek az alapfémből és a hegesztési varratokhoz használt anyagokból mintákat, ezekből ún. próbatesteket készítettek és ezeket a mintákat gyorsított öregítésnek vetették alá.
Olyan ez egy kicsit, mint az ember bőrét ért UV sugárzás esetében: akinek a bőre több UV sugárzást kap (sok napozás, sok szolárium miatt), annak a bőre gyorsabban öregszik. Így van ez a tartályfelügyeleti programban is: próbatesteket sugárzunk be olyan, reaktorzónához közeli pozíciókban, ahol intenzívebb neutronsugárzásnak vannak kitéve. Így a konkrét reaktortartály-anyag neutronsugárzás általi öregedése a próbatesteknél gyorsabban megy végbe, mint magában a tényleges tartályanyagban. A próbatesteket besugárzás után roncsolásos anyagvizsgálatnak vetik alá, amelynek segítségével meghatározzák a mechanikai tulajdonságaik romlását. Mivel a próbatesteket jóval több gyorsneutron éri, mint magát a teherviselő reaktortartály falát, a vizsgálatokkal előre látjuk, hogy a reaktortartály 10-20-30 évvel később milyen mechanikai állapotban lesz.
Ez alapján lehet ellenőrizni a tartály anyagának megfelelőségét. Ha a vizsgálatok azt mutatnák, hogy a tartályfal öregedése nem megengedett szintet ér el, lehetőség van a tartály helyszíni hőkezelésére: a paksiakhoz hasonló finn Loviisai Atomerőműben erre korábban sor is került, az eljárás működőképessége többszörösen bizonyított. De ebben a pillanatban a rendelkezésre álló adatok arra mutatnak, hogy a paksi reaktortartályok – hőkezelés nélkül is – képesek lesznek összességében 70 éves üzemidőt teljesíteni.
A reaktortartályokhoz további vizsgálatok is társulnak. Arról, hogy nincs-e vagy nem jelent-e meg repedés a tartályok falában, roncsolásmentes (ultrahangos) vizsgálatokkal győződnek meg. Mivel a reaktortartály gazdaságosan nem cserélhető komponense az atomerőműnek, a gondos üzemeltetés és a tartály állapotának folyamatos nyomon követése (a reaktortartály felügyeleti program) az atomerőmű üzemidő-hosszabbításának egyik kulcseleme.
2. ábra: A paksi VVER-440 blokk primer köri főberendezéseinek 3D ábrája, középen a reaktortartállyal, körülötte a gőzfejlesztő berendezésekkel (Forrás: Aszódi Attila, egyetemi előadás)
A másik kulcskérdés, ami a 3. mérnöki gáthoz tartozik, a gőzfejlesztők állapotának kérdése. Ezek a berendezések képezik a hőtechnikai kapcsolatot a reaktort hűtő primer hűtőrendszer és a hőt mechanikai munkává, majd villamos energiává alakító szekunder rendszer között. A gőzfejlesztők hatalmas felületi hőcserélők, amelyek a nyugati PWR-ek és az újabb orosz VVER reaktorok esetében úgy vannak beépítve a hermetikus védőépületbe, hogy jelentősebb épületbontás nélkül ki lehessen őket cserélni, de a VVER-440 esetében a tervezők erre még nem gondoltak. Így a paksi üzemidő-hosszabbítás megvalósíthatóságának másik fontos kulcseleme, hogy a gőzfejlesztőket ne kelljen cserélni a meghosszabbított üzemidő alatt sem. A rendelkezésünkre álló adatok alapján elmondható, hogy nagy valószínűséggel ez a feltétel is teljesíthető lesz.
A 4. mérnöki gát a hermetikus védőépület: itt a vasbeton állapota, az épület funkcióinak fenntartása, illetve ennek az igazolása kulcskérdés. Ez is elsősorban vizsgálatokat igényel, de elképzelhetőek olyan helyek, ahol például a vasbeton szerkezetek belső felületén elhelyezett, ún. dekontaminálható acél burkolatok felújítása válik szükségessé. Az épületekkel tehát külön programelemként az üzemidő-hosszabbítási programban foglalkozni kell.
A biztonsági rendszerek állapotfenntartása, követelményeknek való folyamatos megfeleltetése szintén kulcskérdés a további üzemidő-hosszabbítás során, de itt semmi olyan körülmény nem látszik, ami műszakilag nehézséget okozna.
Az 50 éven túli üzemelésben kulcskérdés még az irányítástechnika, a villamos berendezések és a kábelezés állapota. Ezen a területen rengeteg komponens, berendezés működik, amelyek műszakilag és erkölcsileg is elévülnek ennyi idő alatt, így felújításuk vagy komplett cseréjük szükséges. Ez a munka volumene és összetettsége miatt nagyobb beruházást, komolyabb munkát és nagyon jó koordinációt igényel.
Az üzemidő-hosszabbítás nem csak „vasat, betont és rezet”, hanem „papírt” is igényel, nagyobb mennyiségben: a követelményeknek való megfelelést elemzésekkel igazolni, és biztonsági jelentésekben dokumentálni kell. Nagy feladat az ún. végleges biztonsági jelentés frissítése. Az üzemidő-hosszabbításra engedélyt kell kapni a nukleáris biztonsági hatóságtól, és a környezethasználat okán a környezetvédelmi hatóságtól is. A blokkok 10 évente aktuális időszakos biztonsági felülvizsgálata a további üzemidő-hosszabbítás alatt is feladat lesz.
Az atomerőműnek a normál működése során egyetlen érdemi hatása van a környezetre, a hűtés kapcsán a Duna hőterhelése. Ez az év jelentős részében nem probléma, de a nyári időszakban, főleg majd a Paks II. üzemével párhuzamos üzem alatt fontos kérdéssé válik, és figyelembe kell venni a klímaváltozás várható hatásait is. A hamarosan induló környezeti hatásvizsgálat és környezetvédelmi engedélyezés során erre a kérdésre külön ki kell térni, és itt is igazolni kell a környezetvédelmi előírások betarthatóságát. A feladat nem megoldhatatlan, de foglalkozni kell vele.
A TÜH projekt révén a paksi blokkok mostantól még 30-35 évig működhetnek majd, ami emberi léptékben egy teljes szakember generációt jelent. Ebből az következik, hogy a további üzemidő-hosszabbítás elengedhetetlen feltétele a humán erőforrások biztosítása, egy új üzemeltető generáció kiképzése, munkába állítása és megtartása a nukleáris iparban. Ez önmagában is komoly feladat, ami országos, kormányzati teendőket is ad.
Összességében a paksi atomerőmű meglévő VVER-440 típusú blokkjainak további üzemidő-hosszabbítása előtt elháríthatatlan akadály nem látszik, de sok adminisztrációs és műszaki feladatot kell elvégezni ahhoz, hogy a blokkok a 2030-as éveken túl is működhessenek. Hogy a további üzemidő-hosszabbítás pontosan hány éves lesz, azt a megkezdett műszaki vizsgálatok fogják megmutatni. A +20 év az összes blokk esetén egy reális és kézenfekvő cél.
Jelen blogbejegyzés szerkesztett formában megjelent a portfolio.hu-n is. A bejegyzés vagy annak részei csak a portfolio.hu-ra való hivatkozással idézhetők.