Az elmúlt két héten érdemes volt folyamatosan nyomon követni a villamosenergia-ipari rendszerirányító, a MAVIR honlapján a hazai villamosenergia-rendszer terhelését, ugyanis a hazai villamosenergia-történelem legnagyobb rendszerterhelésű pillanatait élhettük át, azaz soha ekkora villamos teljesítményre nem volt még szükség Magyarországon. Mielőtt rátérnénk az aktuális csúcsdöntésre, vessünk egy pillantást arra, hogyan is alakult a hazai villamosenergia-rendszer bruttó csúcsterhelése az elmúlt közel 50 évben.
Adatok forrása: MEKH-MAVIR (2015): A magyar villamosenergia-rendszer 2014. évi statisztikai adatai, p. 77., és a MAVIR honlapja; saját ábrázolás.
Látható, hogy a csúcsterhelés a rendszerváltás előtt viszonylag gyorsan növekedett, az 1990-es évek elején azonban lezuhant. Ez a zuhanás annak volt az eredménye, hogy a magyar nehézipar leépült, a termelés visszaesett, így nagy energiafogyasztók léptek ki a rendszerből. A közelmúltat vizsgálva érdemes kinagyítva megnézni a fenti ábra 1990-2016-ra vonatkozó szakaszát.
Adatok forrása: MEKH-MAVIR (2015): A magyar villamosenergia-rendszer 2014. évi statisztikai adatai, p. 77., és a MAVIR honlapja; saját ábrázolás.
Látható, hogy az 1990-es évek eleji zuhanást dinamikus növekedés kísérte az ipar átstrukturálódásával és a termelés újraéledésével, ez tartott egészen a 2008-as világgazdasági válságig. Ezt követően a növekedés elbizonytalanodott, stagnálásra, enyhe csökkenésre váltott, aztán idén kilőtt, a tavalyi csúcsértéket közel 300 MW-tal múlta felül.
Az elmúlt héten még csak az eddig elért csúcsot, a 2007. évi 6602 MW-ot kóstolgatta a negyedórás terhelés, többször megközelítette azt, átlépni azonban csak a pillanatnyi terhelésekkel tudta. Ezen a héten viszont többször is megdöntöttük az eddigi rekordot, az új csúcsot épp csütörtök délután, 16:45-kor értük el, értéke 6749 MW volt. Mint fent írtam, ez történelmi csúcs, a negyedórás hazai bruttó rendszerterhelés ekkora értéket még sosem ért el. Csütörtök késődélután volt olyan pillanat, amikor az aktuális terhelés meghaladta a 6800 MW-ot is.
Az új csúcs természetesen több tényező együttállásának következménye. Részletes adatok erről nem állnak rendelkezésre, de azért az iparágban elég határozott elképzelések vannak az ilyen csúcsok okáról. Ezek között említhetjük többek között az év végi szünet előtt csúcsra járó termelést, a ködös, sötét időszak általános pótlólagos világítási igényeit, a karácsonyi díszkivilágításokat és a viszonylag hideg időjárást (többlet fűtési igényt) is.
Mi várható e téren hosszabb távon, 10-20 éves távlatban? Ehhez több tényező együttes hatását szükséges vizsgálnunk.
(1) Energiahatékonyság körültekintő megítélése: Gyakorta elhangzó gondolat, hogy a különböző villamosenergia-fogyasztó berendezések energiahatékonyságának növekedése a villanyfogyasztás és rajta keresztül a csúcsterhelés csökkentésének irányába hat. Ez azt jelenti, hogy amennyiben egy gépet (pl. TV-t, porszívót) egy éppen ugyanolyan szolgáltatást nyújtó új géppel váltunk ki, akkor annak fogyasztása, és feltehetően teljesítményigénye is csökken. Ez eddig igaz is lenne, de a hangsúly itt természetesen azon van, hogy tényleg „ugyanolyan szolgáltatást nyújtó” géppel váltjuk-e ki. Sokszor ez ugyanis a fogyasztók mindennapi döntései alapján nem így történik. Emlékezzünk vissza a régi televíziókészülékek képátlójára és a mai modern tévék méretére. Egy régi 50 centis katódsugárcsöves TV-t kevesen cserélnek le 50 cm-es LED TV-re. Ha már újat, korszerűbbet vesznek, nagyobbra, szebbre is cserélik. Ekkor már nem is olyan egyértelmű az, hogy a kétszer-háromszor nagyobb képátlójú készülék kevesebbet fogyaszt-e, mint régi társa. Lássunk erre egy ábrát, mely egy arra vonatkozó francia rendszerirányítói becslést mutat, hogy évente mennyi villamos energiát fogyaszt egy tévé.
Egy televíziókészülék becsült éves villamosenergia-fogyasztása a francia rendszerirányító tanulmánya alapján
Forrás: RTE (2016): Annual electricity report 2015, p. 62.
Meglepő eredmény. Az ábra azt mutatja, hogy 2005 és 2013 között a tévék energiahatékonyságának javulása ellenére azok éves villanyfogyasztása kb. 65%-kal nőtt. Az elmúlt 10 évről (2005-2015) pedig elmondható, hogy egy tévékészülék éves fogyasztása ma másfélszerese annak, mint ami 2005-ben volt. Óvatosan kell tehát azzal az érveléssel bánni, miszerint az energiahatékonyság a villanyfogyasztás és a rendszerterhelés csökkentése irányába hat, mert ez csak bizonyos feltételek mellett igaz.
(2) A csúcsterhelés csökkentéséhez járulhat hozzá a villamosenergia-hálózat „okos” menedzselése, bizonyos fogyasztók működésének ütemezett be- és kikapcsolása. Tulajdonképpen a vezérelt áramra kötött villanybojlerekhez hasonló rendszer lenne ez, melyben egyes berendezések (pl. hőszivattyúk) működtetését a fogyasztó átengedi egy, a villamosenergia-rendszert üzemeltető szereplőnek. Ez a ki- és bekapcsolgatás mind a csúcsok csökkentését, mind a terhelési völgyek emelését lenne hivatott szolgálni. Habár hazánkban a villanybojlerek be- és kikapcsolására hosszú időszakon keresztül használták ezt a módszert, a véleményem szerint ez a technológia más típusú fogyasztók számára egyelőre gyerekcipőben jár, próbálkozások már vannak, de egyelőre számtalan technikai (pl. kommunikációs) és gazdasági (megtérülési) akadály vár leküzdésre. Sikeres elterjedése esetén valóban csökkenthetők lesznek majd ezzel a fogyasztási csúcsok és emelhetők a völgyek.
(3) Az áramfogyasztás és a csúcsterhelés növekedéséhez járul hozzá azon háztartási gépek terjedése, amelyek ma még nem találhatók meg sok magyar háztartásban, ilyenek pl. a klímaberendezések, a mosogatógépek, a szárítógépek, a laptopok, szórakoztató elektronikai eszközök és egyéb más elektromos készülékek.
(4) Szintén a villanyfogyasztás és a csúcsterhelés növelését vetíti előre az elektromos autók terjedése, melyek töltését a fogyasztók jellemzően pont az esti csúcsban, a villamosenergia-rendszer amúgy is igen terhelt időszakában végzik manapság. Íme egy olyan ábra erről, mely egy elektromos autós konferencián került a kivetítőre.
Forrás: Sara Gonzalez Villafranca – Cristina Corchero: Key facts and analysis on driving and charge patterns, Dynamic data evolution című előadás, Green eMotion Project konferencia, Budapest, 2015. február 6.
Amint látható, abban a fogyasztói szegmensben, amelyben hosszú távon nagy mennyiségű elektromos autó megjelenésére kell számítani (a háztartási szektorban), az autók töltése épp az esti fogyasztási csúcsra, az este 6-8 óra közötti időtartamra koncentrálódik. Általánosságban is elmondható azonban, hogy az elektromos autók töltése nem a villamosenergia-rendszer számára optimális, alacsony terhelésű időpontokban, azaz nem éjjel, nem hajnalban, hanem nappal, ill. az esti csúcsban történik. Amennyiben ez így marad, az elektromos autók terjedésével az esti csúcsok jelentősen nőhetnek. Ezt csak tovább tetézi, hogy az elektromos autók töltőinek teljesítményigénye folyamatosan nő. Egy közelmúlt konferencia egyik előadásában (IIR: ENKON2016, 2016. december 1., Budapest) nemrég az hangzott el, hogy Németországban olyan mintaprojektet építenek ki, amelyben a töltők 300 kW-os (háztartási léptékhez mérve óriási) teljesítményigénnyel rendelkeznek. Egy töltési ponton persze több ilyen töltőt telepítenek, számoljuk csak ki, ez milyen terhelést jelent már néhány autó töltése esetén is a hálózaton! Ha ezt okosabban akarjuk majd csinálni, komoly fejlesztésekre és központi vezérlésre lesz szükség!
(5) Az épületenergetika hosszú távú jövője is kérdéseket vet fel a fogyasztás és a csúcsterhelés szempontjából. Mivel az EU-s szabályozás (Energy Performance of Buildings irányelv) szerint a 2020-as években már csak olyan házakat lesz majd szabad építeni, amelyek rendkívül alacsony energiaigénnyel rendelkeznek (a határoló falakon 20-30 cm-es szigeteléssel, a tetőn 40cm-es szigeteléssel), el lehet majd gondolkodni, hogy érdemes lesz-e az igen kis mennyiségű fűtési célú energiaigényre egy nagy beruházási igényű, földgáz alapú központi fűtésrendszert kiépíteni. Alacsony fűtési energiafogyasztás esetén már meggondolandó lehet egy szimpla villanyradiátoros fűtésben gondolkodni, mely jóval alacsonyabb beruházási költséggel rendelkezik. Gondoljunk csak bele: nincs szükség kéményre (egy kémény szabályos kiépítése több százezer forint), nincs szükség vizes rendszerre, vésésre, a fűtéscsövek falban, vagy padlóban vezetésére (jelentős, és az építőiparban egyre növekvő munkaerőköltség). Egy családi ház esetén milliós nagyságrendű beruházási költségek takaríthatóak így meg. Vessük ezt össze azzal, hogy a villany körülbelül kétszer olyan drága, mint a földgáz és egy alacsony energiaigényű ház energiaigénye rendkívül alacsony, azaz kevés fűtési energiát igényel. A milliós nagyságrendű beruházásiköltség-megtakarításért cserébe érdemes lehet felvállalni a magasabb üzemeltetési költségeket, hisz egy alacsony energiaigényű ház esetében ez csak évi 50-100 ezer forintos többletkiadással jár.
Amennyiben mégis egy vizes központi fűtésrendszer kialakítása mellett dönt a tulajdonos, felmerül a hőszivattyúk beépítésének lehetősége is, amelyek jóval nagyobb beruházási költség igényűek, de hatékonyabb villamosenergia-felhasználást tesznek lehetővé. Noha a legtöbb esetben forróvíztárolóval együtt épülnek az ilyen rendszerek, ez akkor is új terhelést hoz a villamosenergia-hálózatra.
Összességében véve az épületenergetika terén várható változások a villamosenergia-rendszer terhelése és csúcsterhelése szempontjából felfelé mutató tényezőket mutatnak.
Amint a legelső ábrán láttuk, a csúcsterhelés szépen lassan növekszik, s a jövőre vonatkozóan gyengébbek és bizonytalanabbak a csökkenés irányába ható tényezők, mint a növekedést mutatók. Vagyis véleményem szerint a változások eredője továbbra is az enyhe növekedés felé mutat, azaz a jövőben – a fenti gyorselemzés alapján – új rendszerterhelési csúcsok várhatóak. Ezek kielégítésére pedig az időjárástól független erőművek, többek között atomerőművek is kellenek, amint azt a legutóbbi bejegyzésemben is leírtam.